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The Walsh system will be considered in the Kaczmarz rearrangement. We show
that the maximal operator o* of the (C,1)-means of the Walsh-Kaczmarz—Fourier
series is bounded from the dyadic Hardy space H? into L? for every 1/2<p<1.
From this it follows by standard arguments that ¢* is of weak type (1,1) and
bounded from L? into L7 if 1 <g<o0. © 2000 Academic Press

The a.e. convergence of the (C,1)-(Fejér) means of Walsh—Fourier series
was investigated first by Fine [ 1]. He proved that these Cesaro means g, f
of an integrable function f converge a.e. to f as n — oo if the Walsh system
is taken in the Paley ordering. Schipp [5] considered the maximal
operator ¢*f:=sup, |, f| and showed that ¢* is of weak type (1,1). From
this it follows by standard argument also the a.e. convergence. Since
o*: L* — L* is bounded, Schipp’s result implies by interpolation also the
boundedness of *: L” - L? (1 <p< o). This fails to hold for p=1 but
Fujii [2] proved that ¢* is bounded from the dyadic Hardy space H' to
L' (see also Simon [6]). Fujii’s theorem was extended by Weisz [10] to
H? spaces, namely that o*: H? > L? (1/2<p<1) is bounded.

If the Walsh system is taken in the Kaczmarz ordering, then the
analogue of the statement of Schipp is due to Gat [3]. Moreover, he
proved an (H', L')-like estimation, i.e., that |[c*f|, < C || f|lm (f€H").

In the present paper the above mentioned result of Weisz will be proved
for the Walsh-Kaczmarz system. We show that ¢* is a so-called p-quasi
local operator for every 1/2 <p < 1. It is known (see Weisz [ 10]) that the
p-quasi locality together with the L*-boundedness of ¢* implies that
o*: H? - L? is bounded. The proof is based on the atomic structure of H?.
Furthermore, by known results on interpolation of operators we get the
weak type (1,1) of ¢* and that ¢*: L9 — L9 (1 <g<o0) is also bounded.
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Finally, we extend the (H?, L?)-boundedness to every 0 <p<1 if the
maximal operator of the Cesaro means is considered only of order 2"
(n=0,1,..).

2. DEFINITIONS AND NOTATIONS

In this section the most important definitions and notations are introduced.
First of all we give a short summary of the basic concepts of the Walsh—
Fourier analysis. Furthermore, we formulate some known statements, which
will be cited in our investigations. For details see the book Schipp—Wade—
Simon and Pal [4].

Let G be the so-called dyadic group, ie., the set of all sequences x =
(X, ke N) with terms x, € {0, 1} (keN:={0, 1, ..} ). The group operation
+ in G is the coordinatewise addition modulo 2, ie., if x=(x,, keN),
y=(yr, keN)eG then x +y:=(x;, @y, keN), where a@® b denotes the
addition modulo 2 of a, be N.

The topology of G is determined by the intervals of G, that is, by the sets

In(x) ::{y:(ykakEN)eG: y0:x09-"9 ynflzxnfl}
(xeG,0<neN).

Let I,:=G and I,:=1,0) (neN), where 0:=(0,keN)e G is the null
element in G. Then G is a compact Abelian group. We consider the
normalized Haar measure in G. The symbol L? (0 <p < c0) will denote the
usual Lebesgue space of real-valued functions f defined on G with the norm
(or quasinorm) | f1,:= (s |/17)"” (p<0), | /]l :=esssup |f].

To the description of the characters w, (n€IN) of G let the functions r,
(keN) be defined as ri(x):=(—1)* (xeG). Then (w,, ne N)—the so-
called Walsh—Paley system—is the product system generated by (r,, n e N).
Namely, if neN and n=37_,n.2* (n,=0,1 (keN)) is the binary
representation of n then

The functions
n—1 1 n

Dn:= z Wi, Kn:zf Z Dk (}’l:l, 23 )
k=0

are the exact analogues of the well-known (trigonometric) kernel functions
of Dirichlet’s and Fejér’s type, respectively. These functions have some
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good properties, useful also in the following investigations. First we mention
a simple result with respect to Dirichlet kernels, which plays a central role
in the Walsh—Fourier analysis:

2" (xel,)

0 (xeG\I) (neN). (1)

Dou(x) = {

There is a strong connection between K, (n=1,2,..) and D,s (seN).
Namely, the next relations hold for all xe G and se N,

0<Ky(x)=13 <2_s D,i(x) + Zs: 2I=5 Dyo(x + e,)>, (2)

=0

1K, (x z 20 12 (Dyi(x)+ Dyi(x +e,)  (25<I<2*1),  (3)

where ¢, € G (/e N) is determined by (¢;), =0 (k#1) and (¢;),=1 (ke N).
We remark that K,’s are uniformly L'-bounded, i..,

sup [|K, ||, < oo. (4)

n

In this note the so-called Kaczmarz rearrangement (¥,,neN) (called
Walsh-Kaczmarz system) of (w,, neN) will be investigated. The functions
¥, (neN) are defined in the following way. If 0 <neN then there is a
unique seN such that the binary representation of n is of the form
n=2°+%45_1 n 2% Then let

s—1
(x)i=rx) [] rme, | (xeG).
k=0

Furthermore, let ¥, :=w,. It is not hard to see that ¥,n=w,.=r,, and
{(We k=27 .,2""" —1} ={w, k=27 .,2"*"—1} (meN). Finally, if

To(X) 1= (Xg 1y Xg_ny ey X1 Xy Xg5 Xg 415 ) EG (xe @)
then
Vo (x)=rdx)w,_s:(t(x))  (x€G).
We remark that by (1) we get D,;(t;(x)) = D,i(x) (jeN, xeG).

It is clear thqt (¥,,neN) is also a complete orthonormal system. If
feL' then let f(k):={s f¥ (keN) be the kth Fourier coefficient of f
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with respect to (¥,, neN). Denote by g, f (0 <neN) the nth Fejér mean
of f, ie., let

an.f:=Z§; (1-5) 7o v,

Then o, f(x) =g f(1) #,(x + 1) dt (x € G), where the nth Fejér kernel with
respect to the Walsh Kaczmarz system is given by

S e

A simple calculation shows (see also Skvortsov [8]) that for xe G and
2°4+m (seN, m=0,..,2°—1)

(2°+m) Aps (X)) =1+ Z 27 Dyi(x) +m Dys(x)

Jj=

Z 27r/(x) Kyi(1;(x)) + mr (x) K, (7(x)).  (6)

By (1), (4) and (6) it is clear that also .#,’s are L'-bounded:

sup [|.7, ||, < co. (7)

n

In this note the maximal operator o* will be investigated, where

o*f:=suplo,f|  (feLh).

The estimation (7) implies obviously that ¢*: L* — L* is bounded.

3. HARDY SPACES

Hardy spaces can be defined in various manner. (For details see e.g., the
book of Weisz [11].) To this end let the maximal function of fe L' be
given by

J*(x)=sup2”

n

L . ‘ (xeG)

and introduce the martingale Hardy spaces for 0 < p < oo as follows: denote
H? the space of f’s for which || /|| g» := || f*|, < c0. It is well-known that for
1 <p < oo the space H? is nothing else than L?.
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For 0 <p <1 the atomic decomposition is a useful characterization of
H?. To demonstrate this we give first the concept of atoms as follows: a
function ae L[ 0, 1) is called a p-atom if either a is identically equal to 1
or if there exists a dyadic interval /= I(x) for some N e N, x € G such that

suppacl, lall, <2™?  and J a=0. (8)
G

We shall say that a is supported on 1. Then if a function f belongs to H?
then there exist a sequence (ap, k=0,1,..) of p-atoms and a sequence
(Ur, k=0,1, ..) of real numbers such that > % , |, |? < oo and

f= Z Hilg- 9)
k=0

Moreover, the following equivalence of norms holds,

0 1/p
cprpsinf<Zluk|p> <SG fllgr (fEHP), (10)

k=0

where the infimum is taken over all decompositions of f of the form (9).
(Here and later ¢,, C,, C will denote positive constants depending at most
on p, although not always the same in different occurrences.)

A sublinear operator T which maps H? into the collection of measurable
functions defined on G will be called p-quasi local if there exists a constant
C, such that

L\I|Ta|"<CP (11)

for every p-atom a supported on . Assume the L*-boundedness of 7, i.e.,
that | 7| <C|fllo (f€L®). Then it is known (see Weisz [10] or
Simon [7]) that for T to be bounded from H” to L? it is sufficient that T'
is p-quasi local.

4. CESARO SUMMABILITY

The Walsh—-Kaczmarz system was studied by many authors. So e.g.,
Schipp [5] proved that this system is a convergence system (see also
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Wo-Sang Young [12]). In Skvortsov [8, 9] the L!'-convergence and the
uniform convergence of Fejér means was investigated. Gat [ 3] showed that
lim, o, f(x) = f(x) (a.e. xeG, feL'). Moreover, he proved that g*: L7 —
L7 is bounded for all 1 <¢g < oo and of weak type (1,1). Furthermore, it is
also proved the estimation ||c*f|; < C || f|llz (f € H"). In this connection
we refer to Fujii [2] (see also Simon [6]), namely, that the analogous
estimation with f instead of |f| holds with respect to the Walsh—Paley
system. This last result was extended by Weisz [ 10] to H? (1/2 <p).

In the present work we give the analogue of Weisz’s result for the
Walsh—Kaczmarz system. Namely, the following theorem will be proved.

THEOREM 1. Let 12<p<1. Then ¢*: H? —» L? is bounded.

Applying known results on interpolation of operators (see Weisz [ 10] or
Simon [7]) we get the next

COROLLARY 1. If1<g< oo then g*: L?— L7 is bounded. Moreover, c*
is of weak type (1,1).

From Corollary 1 it follows by standard arguments

COROLLARY 2. If feL! then lim, o, f(x)= f(x) for ae. xeG.

If we consider the maximal operator of the Fejér means of order 2”
(neN) then Theorem 1 can be extended to every 0 <p < 1. In other words
the next theorem is true.

THEOREM 2. Let 0<p<1. Then there exists a constant C, such that
Isup, (o201, < Cp | f | o for every fe H”.

5. PROOF OF THEOREMS

Taking into account the previous observations it is enough to prove that the
maximal operators in question are p-quasi local forall 12 <p<lorO0<p<1,
ie, (11) holds for T:=0¢* or Tf :=sup,, |o,.f| (f€ L"). To this end let a be a
p-atom. It can be supposed that a is supported on 7, for some N e N. That is,
lall o <2¥7 and [ga= |, a=0. This implies that a(k) =0 (k=0, .., 2°—1)
therefore o¢5s,,,a=0 if s=0,.,N—1, m=0,.,2°—1. Hence assume
N<seN, m=0,..,2°~1 and xeG\Iy. Then we get by (6) and (1)
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0-25+ma(x)

1 S_l . . .
— J .
=5 LNa(t)<1 +j=202 Dyj(x+1t)+mDy(x+1)

s—1
+ Y 27ri(x+ 1) Kyi(tj(x + 1) +mrx+ 1) K, (t(x + t))> dt
j=0

—1

! L a(t)<.xz 2 (x + 1) Koy (z,(x + 1))

C24m a1

+mr(x+1) K, (t(x+ t))> dt

1 s—1 . . .
=5 " le=§'+1 27 LN a(t) ryi(x +1) Kyi(t;(x + 1)) dt
o | a0 Kyl 0) di =1 00x) + 0 2(x),

Iy

where n:=2°+m.
Let us examine first o{"(x). Applying (2) it follows that

aM(x)=

s—1
Yy 277! f a(t)ri(x +1) <2—fD2,(Tj(er 1)

j=N+1 Iy

2°+m

J
—%ZZ“VDyqu+ﬂ+q0dL

1=0

Since D,i(7,(x + 1)) = D,i(x + 1) =0 if re I)y thus

s—1 Jj
0511)(x)=2s+m Yy o2y zz—fL a(t) ry(x + 1) Dys(t;(x + 1) +¢))) dt
j=N+1 1=0 N
I L A : oo
=5 X Y27 aln) ek Dalr(x ) Fep)

j=N+1 1=0 Iy

Let v=0,..,, N—1 such that xel\I,,,. If j=N+1,..,5—1 and z,
(keN) denotes the kth coordinate of 7,(x +¢) then zo=x, , @1, 4, ...,
2, N 1= XDy, 2 N F XN 1y Iy 2= Xy 1, Zj 1 = 1, zj,u=03 s
z;_1=0, z;=x;®t;, ... From this it follows by (1) that D,;(z;(x + 1)
+e)#0 (tely)iffI=j—v—1and x,,,=--- =xy_; =0. Let Iy, be the
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set of such x’s, then the measure of I , is 27". Thus we get the next
estimation

s—1

Y 272 aln) (v H) Dalrlx o) F e,y di
j=N+1 Iy
L1 lal o
<——— 27 |all, < C
23+m20+2 Z H H 2

j=N+1

1
2°+

lol)(x)] <

This implies

N—-1

J sup [a\V(x)|? dx= )’ J sup |o{V(x)|? dx
G\ly n v=0"Iy, n
N—1 1

<G llalz, Y - 5w<C
P U:02p 2N P

for all 0 <p<1. We recall that g,.a(x) =0c"(x) (xe G\Iy), therefore the
last estimation proves Theorem 2.
Now, let seN, s>N; [=0,..,s and m=2'"1, .., 2/ — 1. Then by (3)

1—1 I—1

K (t(x+ )<Y 277" Y (Dyi(r(x + 1)) + Dai(t(x + 1) + ¢))),
therefore
o200 < ST 2T [ D+ ) D30+ )
_”;”J‘:Lf Z z 2= 1[ (Dai(ty(x + 1) + Doi(zy(x £ 1) Fe))) dt

i=0 j=0 Iy

|a|oo<Z 2j Doe 1)) d

I—1 i—1

+ Y 22’f Dyi(t (x+z)+ej)dz>

i=1 j=0
= 0@ (x)+ 02 (x).

Let xeI,\I, ., (v=0, .., N—1) and investigate first SUp,~ y. j—o, .. 25_1 ¥

a8 ,(x) as follows:
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sup & (x)=sup max max &% (x)

s=N;m=0,..,25—1 §s=N 1=0,..,s m=2/-1_ 2/_1

<Clal., sup1<z 2f Dyt (x + 1)) dt

s
s>N2

s—v—1

+ ¥ 2fj Dyi(t,(x + 1)) d

i=s—N+1

. Sil 2,-] D2,-(7;S(xjr[))d[>.

i=s—v Iy

If tely and i=0, .., s — N then (see the coordinates of 7, (x + ¢) above)

. 20 A =00,y 0, Fars ey By g5 Xg gy wrn Xg 15 gy ont)
Dalzx+1)= {0 otherwise

Denote by 1% (x) the set of s of the form

= (0, weey 0, IN’ ceey tS—i—l’ Xs_i, ceey xs_l, tS’ ...).

Then the measure of 7§ ,(x) is 27~ and

sup - z 2J Da(e,(x + 1)) di

s=N 23‘ i=
R
<Csup o y Lm et o)
5= i=0 N,
15y 2 1
<C = 2! <&n
f;’ll])\, 2s = 2N+1 22N

If xel \I, .1, telyand i=s—N+1,.,5s—v—1 then Dy(r(x+1))=2*

iff xy = =x, ,=0and rel{) _,_ N(x ). Otherwise D,i(t,(x +1))=0.
Therefore if /=0, .., N—1 and J 5\’,)” ‘stands for the set of Z's in G such that
2=(0,.0, 0,1, 2, 4 1y s 2715 0,y 0, 2y, Zy g 1, ) then TN\L =UN T,
and for er(’?U (I=v,..,N— 1) we have
s—v—1 —I1—1 i
sup 213 Y f Dyi(t(x + 1)) dt < Csup zls Y Zi%
s=N i=s—N+1 s=N i=s—N+1

1 1
<Cp g2ty
(We remark that the measure of J§) is 272~ V*/=2)

If xel\I,,;, i=s—uv,..,s—1 and tely, then t(x +1)¢1I; so by (1)
Dyi(t(x+1)=0
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Summarizing the above facts it follows that

1 N—1 N—1
| (sup a0y dy < C,llallf gt ¥ X j Y (sup ()" d
G\Iy »n v=0 I=v
1 N—1 N-—1 1 1
<G, llallt, 3w+ Gy lall, UZO IZU 221 3TN

N11N11

1
<C, HaHoozsz‘f‘C [la Hoo2N Z 50 > 21— 1)

<C,,
if12<p<l.
Now, we investigate ¢$3'), (x) for xeI,\I,,; (v=0,..,N—1), [=0, ..,

254+ m

seN, m=2""1 ., 2'—1. Then

sup max max oSl (x)
s=N 1=0,.,5s m=2-1_2/_1

< Cllal ., sup < i lil ZJJ Dyi(t(x+1)+ ej)> dt

s
S>N2 i=1 j=0

s—v—1 i—1
+ ¥ 22][ Dy(ty(x+1)+e)dt

i=s—N+1 j=0

s—1 i—1

+ Y 22’f Dy(ry(x+1) e dr.

i=s—v j=0 N

As above (see the case i=1, .., s— N) we have

s—N i—1
sup —S oy ZJJ Dyi(t (x+1)+e)dt
s>N2 i=1 j=0
s—N i—1
= sup 7 oy 2 J Dyi((t(x +1) +¢;) dr
S>N2 i=1 j=0 I(Iifzi(X’Les—j—l)

s—N i—1 21’

Let N<seN, v=0,..,N—1 and decompose the double sum
T N 2202/ [, Dailr(x + 1) Fe)) dt in the following way:
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s—v—1 i—1
y zzfj Dyi(ty(x +1)+e) dt
i=s—N+1 j=0
s—v—1 s—N-—1
-3 Y 2/[ Dy(t(x+0)+e)di
i=s—N+1 Jj=0
s—v—1 i—1

+ XY Y Danixknded

i=s—N+1 j=s—N

Furthermore we suppose that xeJ{), (/=v, .., N—1) which implies

1 s—v—1 s—N—1 ) . .
sup =5 ¥ Y 2/J Dyt (x+0)Fe)di
s=N 4 j=s—N+1 j=0 Iy
s—v—1 s—N—1

1 ) . .
=sup -5 . Y 2/ L" Dyi(t(x+ 1)+ e dt

s
s> 2 i=s—N+1 j

=0 Itl)s—N(x'i'es—j—l)
1 s—1—1 s—N-—1 21‘ 1 s—I1—1 s—N—1
— _ i J
=sup > Y 2/ 2S\Csup 7 20y 2
s=N i=s—N+1 j=0 s=N i=s—N+1 j=0
<Csu
ST 27

Now, for N<seN, v=0, .., N—1 and xe I,\I,, ; the sum

s—v—1 i—1

y y 2Jj Dyt (x+1)+e)di

i=s—N+1 j=s—N

will be investigated. To this end let /=v, .., N—1 and xeJ§),, te I _ .
If (as above) z; (keN) denotes the kth coordinate of t,(x +¢) then

Zp= - :Zsflf2:0a 257171219 Zs—1=Xs— e Zs—p42=Xp41s Zs—p—1
=1, z_,=--=2z,_,=0, z,=x,®t,, ... This means that for
i=s—N+1, .., l—l the j( < z—l)th coordinate of t(x+1)+e; is

equal to 1 and so by (1) Dyi(t(x+1)+e)=0. On the other hand if
i=s—/then for j=s—I—1Dyi(t(x+1)+ ej) =2/ otherwise D,i(t(x + 1)
+ ¢;) = 0. Therefore

s—v—1 i—1

y y 2fj Dy(r(x+ 1) +e)dt

i=s—N+1 j=s—N

s—v—1
Y 2 Dalrdxd 0 de, )
i=s—1 18w

Furthermore, let J%% (k=v+1,..,/—1) be the set of ueJ§), such that
u_,=---=u,=0 and u, ;=1 The measure of JE*) is 2 P-N+k=2 If
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xeJGX) then Dyi(ry(x+1)+e,; )=2"(i=s—1I .,s—k)and if i>s—k
then D,i(t(x+¢)+e,_,_,)=0. Thus

s—v—1

sup 3 Y 27 Dadedx b ey dr
s=N i=s—1 Iy s—n
1 sk . .
=sup — . 2“1_1[ Dyi(t(x+1)+e,_,_ ;) dt
s>N2 i=s—1 ’(sts—zv
s—k 21‘ 1
s—1—1
=sup 5 ,E_,z »<Conz

We get by similar observations that for xe I,\I,,; (v=0, .., N—1), i=
§—10,..,s—1 and for j=0,..,i—1

j Da(r(x+1) +e)) di :j

Dyi(t(x+1)+e)dt+#0
Iy 1 n
iff xeJ§,. From this it follows that

s—1 i—1

1 . . .
sup - ooy 2/ L Dyi(tx+ 1) +e;)dt
N

s=N i=s—v j=0
1 s—1 2i 1
— _ 25—1}—17<C7.

Thus the proof of Theorem 1 can be finished as follows:

n

| (supo®(x))? dx
G\

o (lal MSTAST Jaln,
=*p 22pN + Z Z 2p(l+N).211+n—l
v=0 I=v
ot Aet IS llals, 1 "alale 1
+v§0 I;} k:D+12p(I+k)'2u+N7k 2 o DN

1 N—-1 1 N—-1

<cC, <2<1—2P>N+2,,N L X2

Nll I—1

— B N—1 1
Xogm X 2070 ;0 Z,ﬂ,)scp,

v k=v+1

Nz—:l 1
Tl 5
v=0 2 1

if12<p<l.



ON THE CESARO SUMMABILITY 261
REFERENCES

. J. Fine, Cesaro summability of Walsh—Fourier series, Proc. Nat. Acad. Sci. USA 41
(1955), 558-591.

. N. J. Fujii, Cesaro summability of Walsh-Fourier series, Proc. Amer. Math. Soc. 77
(1979), 111-116.

. Gy. Gat, On (C,1) summability of integrable functions with respect to the Walsh—
Kaczmarz system, Studia Math. 130 (1998), 135-148.

. F. Schipp, W. R. Wade, P. Simon, and J. Pal, “Walsh Series: An Introduction to Dyadic
Harmonic Analysis,” Akadémiai Kiado, Budapest, Hilger, Bristol/New York, 1990.

. F. Schipp, Certain rearrangements of series in the Walsh series, Mat. Zametki 18 (1975),
193-201.

. P. Simon, Investigation with respect to the Vilenkin system, Ann. Univ. Sci. Sect. Math.
(Budapest) 27 (1985), 87-101.

. P. Simon, Remarks on Walsh—Fourier multipliers, Publ. Math. (Debrecen) 52 (1998),
635-657.

. V. A. Skvortsov, On Fourier series with respect to the Walsh-Kaczmarz system, Anal.
Math. 7 (1981), 141-150.

. V. A. Skvortsov, Convergence in L' of Fourier series with respect to the Walsh-Kaczmarz
system, Vestnik Mosk. Univ. Ser. Mat. Meh. 6 (1981), 3-6.

. F. Weisz, Cesaro summability of one- and two-dimensional Walsh—Fourier series, Anal.
Math. 22 (1996), 229-242.

. F. Weisz, “Martingale Hardy Spaces and their Applications in Fourier Analysis,” Lecture
Notes in Mathematics, Vol. 1568, Springer-Verlag, Berlin/Heidelberg/New York, 1994.

. W. S. Young, On the a.e. convergence of Walsh-Kaczmarz Fourier series, Proc. Amer.
Math. Soc. 44 (1974), 353-358.



	2. DEFINITIONS AND NOTATIONS 
	3. HARDY SPACES 
	4. CESARO SUMMABILITY 
	5. PROOFS OF THEOREMS 
	REFERENCES 

